July 06, 2020

Report to:

Lvnda Lombardi

Wood - E&I Solutions, Inc. 10940 White Rock Road

Suite 190

Rancho Cordova, CA 95670

Bill to:

Ashlev Shively

Wood - E&I Solutions, Inc.

10940 White Rock Rd

Ste 190

Rancho Cordova, CA 95670

Project ID:

ACZ Project ID: L56330

Lynda Lombardi:

Enclosed are revised analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on December 09, 2019 and originally reported on January 07, 2020. Refer to the case narrative for an explanation of the changes. This project was assigned to ACZ project number, L56330. Please reference this number in all future inquiries.

All analyses were performed according to ACZ® Quality Assurance Plan. The enclosed results relate only to the samples received under L56330. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ surrent NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after February 06, 2020. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZs stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

Sue Webber has reviewed and

me grall

approved this report.

Page 1 of 20 L56330-2007061428

Case Narrative

Wood - El Solutions, Inc. July 06, 2020

Project ID:

ACZ Project ID: L56330

Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 9 miscellaneous samples from Wood - E&I Solutions, Inc. on December 9, 2019. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ scomputerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L56330. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Holding Times

All analyses were performed within EPA recommended holding times.

Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following required further explanation not provided by the Extended Qualifier Report:

This report was revised on 07/06/2020 to report corrected sulfur forms data and to add additional calculations per Nevada regulations. No other changes were made.

1. □ANP/AGP Ratio (N1) - This report has been revised on 05/04/2020. For samples L56330-04, 05 and -09, the Nevada Alternative II calculations have been applied since the ANP/AGP ratio was <1.2. No other changes have been made.

REPAD.03.06.05.01

L56330-2007061428 Page 2 of 20

Project ID:

Sample ID: STSB32_0.5-3

ACZ Sample ID: **L56330-01**

Date Sampled: 11/25/19 13:40

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date /	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		5.00			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure)	8			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure)	1.6			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	<1	U	*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	5.4		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure)	3			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	8.0		*	%	0.1	0.5	01/06/20 12:52	IIr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	•	0.17			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.16		*	%	0.01	0.1	01/03/20 0:00	IIr
HCI Rinse Residue		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	Ilr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Hot Water Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-H2O Sulfate Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Pyritic Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	IIr
Total Sulfur		1	0.16		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date /	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:34	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 19:40	jms

L56330-2007061428 Page 3 of 20

Project ID:

Sample ID: STSB32_6-15

ACZ Sample ID: **L56330-02**

Date Sampled: 11/25/19 14:06

Date Received: 12/09/19 Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		10.00			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure	e	12			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc) Net Acid Generation	M600/2-78-054 NV Modified Sobek Procedure Sequential NAG - EGI 2002	e	1.2			t CaCO3/Kt			07/06/20 0:00	calc
Procedure										
NAG		1	2		*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	4.6		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure	e	2			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	1.2		*	%	0.1	0.5	01/06/20 16:42	? IIr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	e	0.31			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.14		*	%	0.01	0.1	01/03/20 0:00	IIr
HCI Rinse Residue		1	0.17		*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.18		*	%	0.01	0.1	01/03/20 0:00	llr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-H2O Sulfate Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	llr
Pyritic Sulfur		1	0.17		*	%	0.01	0.1	01/03/20 0:00	IIr
Total Sulfur		1	0.32		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:37	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 19:46	jms

L56330-2007061428 Page 4 of 20

Project ID:

Sample ID: STSB34_0.5-3

ACZ Sample ID: **L56330-03**

Date Sampled: 11/25/19 15:05

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		3.75			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure)	11			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure)	2.93			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	2		*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	6.1		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure)	7.25			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	1.1		*	%	0.1	0.5	01/06/20 17:59	Ilr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	•	0.11			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.11		*	%	0.01	0.1	01/03/20 0:00	llr
HCl Rinse Residue		1	< 0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	Ilr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-H2O Sulfate Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	IIr
Pyritic Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Total Sulfur		1	0.12		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:40	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 19:52	jms

L56330-2007061428 Page 5 of 20

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: STSB34_6-15 ACZ Sample ID: L56330-04

Date Sampled: 11/25/19 15:28

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		13.4			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Generation Potential (calc)	M600/2-78-054 1.3	1	13.1		*	t CaCO3/Kt	0.31	3.1	05/01/20 12:49	cra
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure	Э	12			t CaCO3/Kt	1	5	07/06/20 0:00	calc
Acid-Base Potential (calc)	M600/2-78-054 1.3	1	-1.1		*	t CaCO3/Kt			05/01/20 12:49	cra
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure	Э	0.893			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	3		*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	4.4		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure	Э	-1.44			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1 e	1.2		*	%	0.1	0.5	01/06/20 19:16	Ilr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	Э	0.42			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.24		*	%	0.01	0.1	01/03/20 0:00	llr
HCI Rinse Residue		1	0.18		*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.19		*	%	0.01	0.1	01/03/20 0:00	Ilr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Non-H2O Sulfate Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	llr
Pyritic Sulfur		1	0.18		*	%	0.01	0.1	01/03/20 0:00	llr
Total Sulfur		1	0.43		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL		Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:43	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 19:58	jms

REPIN.02.06.05.01

L56330-2007061428 Page 6 of 20

^{*} Please refer to Qualifier Reports for details.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Wood - E&I Solutions, Inc.

Project ID:

Sample ID: STSB33_0.5-3

ACZ Sample ID: **L56330-05**

Date Sampled: 12/03/19 12:40

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		7.81			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Generation Potential (calc)	M600/2-78-054 1.3	1	5.9		*	t CaCO3/Kt	0.31	3.1	05/01/20 12:51	cra
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure)	7			t CaCO3/Kt	1	5	07/06/20 0:00	calc
Acid-Base Potential (calc)	M600/2-78-054 1.3	1	1.1		*	t CaCO3/Kt			05/01/20 12:51	cra
ANP to AGP Ratio (calc) Net Acid Generation	M600/2-78-054 NV Modified Sobek Procedure Sequential NAG - EGI 2002)	0.896			t CaCO3/Kt			07/06/20 0:00	calc
Procedure										
NAG		1	<1	U	*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	5.5		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure)	-0.812			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	0.7		*	%	0.1	0.5	01/06/20 20:33	llr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc)	0.19			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.19		*	%	0.01	0.1	01/03/20 0:00	IIr
HCI Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.06	В	*	%	0.01	0.1	01/03/20 0:00	llr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Non-H2O Sulfate Sulfur		1	0.06	В	*	%	0.01	0.1	01/03/20 0:00	llr
Pyritic Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Total Sulfur		1	0.25		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation			- ·		V.O.					
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:47	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 20:05	jms

REPIN.02.06.05.01

L56330-2007061428 Page 7 of 20

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: STSB33-FD_0.5-3 Date Sampled: 12/03/19 12:48

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		5.00			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure	e	9			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure	•	1.8			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	<1	U	*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	6.5		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure	e	4			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	0.9		*	%	0.1	0.5	01/06/20 21:50	llr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	e	0.13			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate	FIOC	1	0.13		*	%	0.01	0.1	01/03/20 0:00	llr
HCl Rinse Residue		1	<0.13	U	*	%	0.01	0.1	01/03/20 0:00	IIr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Hot Water Rinse Residue		1	0.03	В	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Non-H2O Sulfate Sulfur		1	0.03	В	*	%	0.01	0.1	01/03/20 0:00	IIr
Pyritic Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Total Sulfur		1	0.16		*	%	0.01	0.1	01/03/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:50	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 20:11	jms

L56330-2007061428 Page 8 of 20

Project ID:

Sample ID: STSB33_6-15 Date Sampled: 12/03/19 13:05

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		6.88			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure)	14			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure)	2.04			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	<1	U	*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	6.9		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure)	7.13			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	1.4		*	%	0.1	0.5	01/06/20 23:06	Ilr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	•	0.21			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.06	В	*	%	0.01	0.1	01/03/20 0:00	llr
HCI Rinse Residue		1	0.15		*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.16		*	%	0.01	0.1	01/03/20 0:00	IIr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Non-H2O Sulfate Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	Ilr
Pyritic Sulfur		1	0.15		*	%	0.01	0.1	01/03/20 0:00	llr
Total Sulfur		1	0.22		*	%	0.01	0.1	01/03/20 0:00	llr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:53	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 20:17	jms

L56330-2007061428 Page 9 of 20

Project ID:

Sample ID: STSB35_0.5-3

ACZ Sample ID: **L56330-08**

Date Sampled: 12/03/19 14:41

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		5.94			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure)	8			t CaCO3/Kt	1	5	07/06/20 0:00	calc
ANP to AGP Ratio (calc)	M600/2-78-054 NV Modified Sobek Procedure)	1.35			t CaCO3/Kt			07/06/20 0:00	calc
Net Acid Generation Procedure	Sequential NAG - EGI 2002									
NAG		1	<1	U	*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	5.6		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure)	2.06			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	0.8		*	%	0.1	0.5	01/07/20 0:23	llr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek	•	0.18			%	0.01	0.1	07/06/20 0:00	calc
	Proc									
H2O-Soluble Sulfate		1	0.18		*	%	0.01	0.1	01/03/20 0:00	IIr
HCl Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Hot Water Rinse Residue		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	llr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Non-H2O Sulfate Sulfur		1	0.01	В	*	%	0.01	0.1	01/03/20 0:00	llr
Pyritic Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Total Sulfur		1	0.19		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 6:57	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 20:23	jms

L56330-2007061428 Page 10 of 20

Project ID:

Sample ID: STSB35_6-15 ACZ Sample ID: L56330-09

Date Sampled: 12/03/19 15:00

Date Received: 12/09/19

Sample Matrix: Soil

Soil Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Acid Generation Potential (calc on Sulfur total)	M600/2-78-054 3.2.4		7.50			t CaCO3/Kt	0.31	3.1	07/06/20 0:00	calc
Acid Generation Potential (calc)	M600/2-78-054 1.3	1	6.6		*	t CaCO3/Kt	0.31	3.1	05/01/20 12:53	cra
Acid Neutralization Potential (calc)	M600/2-78-054 3.2.3 NV Modified Sobek Procedure	e	7			t CaCO3/Kt	1	5	07/06/20 0:00	calc
Acid-Base Potential (calc)	M600/2-78-054 1.3	1	0.4		*	t CaCO3/Kt			05/01/20 12:53	cra
ANP to AGP Ratio (calc) Net Acid Generation Procedure	M600/2-78-054 NV Modified Sobek Procedure Sequential NAG - EGI 2002	e	0.933			t CaCO3/Kt			07/06/20 0:00	calc
NAG		1	2		*	Kg H2SO4/t	1	1	12/27/19 0:00	jms
pH After Oxidation		1	4.7		*	units	0.1	0.1	12/27/19 0:00	jms
Net Neutralization Potential - NV Mod	M600/2-78-054 NV Modified Sobek Procedure	e	-0.5			t CaCO3/Kt			07/06/20 0:00	calc
Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	1	0.7		*	%	0.1	0.5	01/07/20 1:40	llr
Potential Acid Generating Sulfur Sulfur Forms	M600/2-78-054 NV Modified Sobek Procedure M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	e	0.21			%	0.01	0.1	07/06/20 0:00	calc
H2O-Soluble Sulfate		1	0.18		*	%	0.01	0.1	01/03/20 0:00	llr
HCI Rinse Residue		1	0.03	В	*	%	0.01	0.1	01/03/20 0:00	Ilr
HNO3 Rinse Residue		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	IIr
Hot Water Rinse Residue		1	0.06	В	*	%	0.01	0.1	01/03/20 0:00	llr
Non-Extractable Sulfur		1	<0.01	U	*	%	0.01	0.1	01/03/20 0:00	llr
Non-H2O Sulfate Sulfur		1	0.03	В	*	%	0.01	0.1	01/03/20 0:00	llr
Pyritic Sulfur		1	0.03	В	*	%	0.01	0.1	01/03/20 0:00	IIr
Total Sulfur		1	0.24		*	%	0.01	0.1	01/03/20 0:00	IIr
Soil Preparation										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Air Dry at 34 Degrees C	USDA No. 1, 1972				*				12/12/19 7:00	jrp
Crush and Pulverize (Ring & Puck)	EPA-600/2-78-054 3.1.3								12/19/19 20:30	jms

Page 11 of 20 L56330-2007061428

^{*} Please refer to Qualifier Reports for details.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Expla	anations
---------------------	----------

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest Limit Upper limit for RPD, in %.

Lower Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).

Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".

QC True Value of the Control Sample or the amount added to the Spike

Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

	QC	Sampl	e Types
--	----	-------	---------

	, ,		
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- L Target analyte response was below the laboratory defined negative threshold.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (4) EPA SW-846. Test Methods for Evaluating Solid Waste.
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- (5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

L56330-2007061428 Page 12 of 20

ACZ Project ID: L56330

Wood - E&I Solutions, Inc.

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

limits are in % F													
Net Acid Genera	ation		Sequentia	I NAG - E	GI 2002								
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488855													
L56148-05DUP	DUP	12/27/19 15:47			1	1.2	(g H2SO4/				18	20	RA
Neutralization F	otential	as CaCO3	M600/2-78	8-054 NV	Modified S	obek P	rocedure						
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG489391													
L56330-01DUP	DUP	01/06/20 14:09			.8	.8	%				0	20	RA
L56330-01MS	MS	01/06/20 15:26	SI190303-1	1	.8	1.6	%	80	70	130			
WG489391LCSS	LCSS	01/07/20 10:38	PCN59475	99.9		109	%	109	80	120			
WG489391PBS	PBS	01/07/20 11:54				U	%		-0.2	0.2			
Sulfur Hcl Extra	ctable		M600/2-78	3-054 3.2.	4 & 3.2.6 N	NV Mod	fied Sobe	k Proc	е				
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488905													
L56330-01DUP	DUP	01/03/20 12:46			U	.02	%				200	20	RA
Sulfur Hno3 Ext	ractable		M600/2-78	3-054 3.2.	4 & 3.2.6 N	NV Mod	fied Sobe	k Proc	е				
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488905													
L56330-01DUP	DUP	01/03/20 12:46			.01	U	%				200	20	RA
Sulfur Hot H2o	Extractal	ble	M600/2-78	3-054 3.2.	4 & 3.2.6 N	NV Mod	fied Sobe	k Proc	е				
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488905													
L56330-01DUP	DUP	01/03/20 12:46			.16	.15	%				6	20	
Sulfur Hot H2o	Residue		M600/2-78	3-054 3.2.	4 & 3.2.6 N	NV Mod	fied Sobe	k Proc	е				
ACZ ID	Туре	Analyzed	PCN/SCN	00									0
				QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488905				QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qua
WG488905 L56330-01DUP	DUP	01/03/20 12:46		ųс	Sample	Found	Units	Rec%	Lower	Upper	RPD 200	Limit 20	RA
		01/03/20 12:46				.02	%			Upper			
L56330-01DUP		01/03/20 12:46 Analyzed			U	.02 NV Mod	% ified Sobe	ek Proc		Upper Upper			
L56330-01DUP Sulfur Residual			M600/2-78	3-054 3.2.	U 4 & 3.2.6 N	.02 NV Mod	% ified Sobe	ek Proc	e		200	20	RA
L56330-01DUP Sulfur Residual ACZ ID			M600/2-78	3-054 3.2.	U 4 & 3.2.6 N	.02 NV Mod	% ified Sobe	ek Proc	e		200	20	RA Qua
L56330-01DUP Sulfur Residual ACZ ID WG488905	Туре	Analyzed	M600/2-78 PCN/SCN	3-054 3.2. QC	U 4 & 3.2.6 N Sample	.02 NV Mod Found U	% ified Sobe Units %	ek Proc Rec%	e Lower		200 RPD	20 Limit	RA
L56330-01DUP Sulfur Residual ACZ ID WG488905 L56330-01DUP	Туре	Analyzed	M600/2-78 PCN/SCN	3-054 3.2. QC	U 4 & 3.2.6 N Sample U	.02 NV Mod Found U	% ified Sobe Units %	ek Proc Rec%	e Lower		200 RPD	20 Limit	RA Qua
L56330-01DUP Sulfur Residual ACZ ID WG488905 L56330-01DUP Sulfur Total	Type DUP	Analyzed 01/03/20 12:46	M600/2-78 PCN/SCN M600/2-78	3-054 3.2. QC 3-054 3.2.	U 4 & 3.2.6 N Sample U 4 & 3.2.6 N	.02 NV Mod Found U	% ified Sobe Units %	ek Proc Rec%	e Lower	Upper	200 RPD	20 Limit	RA Qua RA
L56330-01DUP Sulfur Residual ACZ ID WG488905 L56330-01DUP Sulfur Total ACZ ID	Type DUP	Analyzed 01/03/20 12:46	M600/2-78 PCN/SCN M600/2-78	3-054 3.2. QC 3-054 3.2.	U 4 & 3.2.6 N Sample U 4 & 3.2.6 N	.02 NV Mod Found U	% ified Sobe Units %	ek Proc Rec%	e Lower	Upper	200 RPD	20 Limit	RA Qua
L56330-01DUP Sulfur Residual ACZ ID WG488905 L56330-01DUP Sulfur Total ACZ ID WG488905	Type DUP	Analyzed 01/03/20 12:46 Analyzed	M600/2-78 PCN/SCN M600/2-78	3-054 3.2. QC 3-054 3.2.	U 4 & 3.2.6 N Sample U 4 & 3.2.6 N	.02 NV Mod Found U NV Mod Found	% Ified Sobe Units % Ified Sobe Units	ek Proc Rec%	e Lower e Lower	Upper Upper	200 RPD	20 Limit	RA Qua RA
L56330-01DUP Sulfur Residual ACZ ID WG488905 L56330-01DUP Sulfur Total ACZ ID WG488905 WG488905PBS	Type DUP Type PBS	Analyzed 01/03/20 12:46 Analyzed 01/03/20 11:40	M600/2-78 PCN/SCN M600/2-78 PCN/SCN	3-054 3.2. QC 3-054 3.2.	U 4 & 3.2.6 N Sample U 4 & 3.2.6 N	.02 NV Mod Found U NV Mod Found U	% ified Sobe Units % ified Sobe Units	ek Proc Rec% ek Proc Rec%	e Lower e Lower	Upper Upper	200 RPD	20 Limit	RA Qua

L56330-2007061428 Page 13 of 20

ACZ Project ID: L56330

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L56330-01	NG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-02	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-03	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L56330-2007061428 Page 14 of 20

Inorganic Extended Qualifier Report

Wood - E&I Solutions, Inc.

ACZ Project ID: L56330

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L56330-04	WG496401	Acid Generation Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
		Acid-Base Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-05	WG496401	Acid Generation Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
		Acid-Base Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-06	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L56330-2007061428 Page 15 of 20

ACZ Project ID: L56330

Wood - E&I Solutions, Inc.

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L56330-07	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-08	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
L56330-09	WG496401	Acid Generation Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
		Acid-Base Potential (calc)	M600/2-78-054 1.3	N1	See Case Narrative.
	WG488855	NAG	Sequential NAG - EGI 2002	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG489391	Neutralization Potential as CaCO3	M600/2-78-054 NV Modified Sobek Procedure	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
	WG488905	Sulfur HCl Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur HNO3 Extractable	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Hot H2O Residue	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).
		Sulfur Residual	M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Proc	RA	Relative Percent Difference (RPD) was not used for data validation because the concentration of the duplicated sample is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

L56330-2007061428 Page 16 of 20

Wood - E&I Solutions, Inc. ACZ Project ID: L56330

Soil Analysis

The following parameters are not offered for certification or are not covered by NELAC certificate #ACZ.

Acid Generation Potential (calc) M600/2-78-054 1.3
Acid-Base Potential (calc) M600/2-78-054 1.3

NAG Sequential NAG - EGI 2002

Neutralization Potential as CaCO3 M600/2-78-054 NV Modified Sobek Procedure

pH After Oxidation Sequential NAG - EGI 2002

Sulfur HCl Extractable M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure
Sulfur HCl Residue M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure
Sulfur HNO3 Residue M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure

Sulfur Hot H2O Extractable WG488905

Sulfur Hot H2O Residue M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure
Sulfur Residual M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure
Sulfur Total M600/2-78-054 3.2.4 & 3.2.6 NV Modified Sobek Procedure

REPAD.05.06.05.01

L56330-2007061428 Page 17 of 20

ACZ Project ID:

L56330

Date Received: 12/09/2019 16:07

Received By:

Date Printed: 12/10/2019

Date	C i iiiica.	12/	10/2013
Receipt Verification			
	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?			X
2) Is the Chain of Custody form or other directive shipping papers present?	X		
3) Does this project require special handling procedures such as CLP protocol?		Х	
4) Are any samples NRC licensable material?			Х
5) If samples are received past hold time, proceed with requested short hold time analyses?	X		
6) Is the Chain of Custody form complete and accurate?	X		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples	?	Х	
Samples/Containers			
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	X		
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	X		
11) For preserved bottle types, was the pH checked and within limits? 1			Х
12) Is there sufficient sample volume to perform all requested work?	Х		
13) Is the custody seal intact on all containers?			Х
14) Are samples that require zero headspace acceptable?			Х
15) Are all sample containers appropriate for analytical requirements?	Х		
16) Is there an Hg-1631 trip blank present?			Х
17) Is there a VOA trip blank present?			Х
18) Were all samples received within hold time?	Х		
	NA indica	ites Not A	pplicable

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(µR/Hr)	Custody Seal Intact?
NA31950	18.1	NA	15	Yes
NA31954	16.1	NA	15	Yes
NA31953	18.9	NA	15	Yes
NA31952	16.2	NA	15	Yes
NA31951	18.3	NA	15	Yes

Was ice present in the shipment container(s)?

No - Wet or gel ice was not present in the shipment container(s).

REPAD LPII 2012-03

L56330-2007061428 Page 18 of 20

Sample Receipt

Wood - E&I Solutions, Inc.

ACZ Project ID: L56330

Date Received: 12/09/2019 16:07

Received By:

Date Printed: 12/10/2019

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

L56330-2007061428 Page 19 of 20

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

	Laboratory N
56	BP/ARC Site Node F
Lessan Chain of Custod	BP/ARC Facility Nan

Management Program LaMP Chain of Custody Record (5633)

ath: NV_YERINGTON

Anaconda Copper Mine Site

Req Due Date (mm/dd/yy):

Lab Work Order Number:

Page of TAT: Yer Rush TAT: Yes No X

10 D. Steamboat Springs, CO, 80487 City, State, ZiP Code: Yerington, Nevada	ting Mode: Act Act Act Act Act Act Act Ac
1892-2443 189	ria Global ID No.: Proposal No. Address: Mork Release No: Adtivity: Activity: Activity
Stage California Global ID No. Enfos Proposal	via Global ID No.: Proposal No. Work Release No.: Consultant/Contractor PM: Kent Parr Proposal No.: Work Release No.: Phone: 916-636-3200 Email: Activity: Activity: Invoice To: BP/ARC Idition of the properties of Preservative in the part of
Endez Proposal No: Work Release No:	Proposal No: Work Release No: Phone: 916-636-3200 Email: Iding Mode: Provision OOC-BU OOC-RM Email Report/EDD To: lynda.lombarral longer or linvoice To: BP/ARC Idinoice To: No. Containers / Preservative Requested Analyses Requested Analyses
Provision Doce Provision Provision Doce Provision	thing Mode: Provision OOC-BU OOC-RM Email Report/EDD To: lynda.lombardi Invoice To: BP/ARC Invoice To: BP/AR
Stage: Activity: Stage: Activity: Stage: Activity: Stage: Activity: Stativity: Stati	Activity: No. Containers / Preservative Requested Analyses Containers / Preservative Requested Analyses
Page-2443 K. Stilwell@pp.com Pate Time Time Page-2443 K. Stilwell@pp.com Pate Time Page-2443 K. Stilwell@pp.com Pate Time Page-2443 K. Stilwell@pp.com Pate Time Page-2443 P	No. Containers / Preservative Requested Analyses Containers Containers
#StitiveII@bp.com ##StitiveII@bp.com ##Stit	Standard Standard Package
#. Stiftwell@bp.com #. Stiftw	Ynnoc
Date Time Date Time	дипос
32 6-15 11/25/19 1540 X 1 1 1	Liquid Imber of
324_0.5-3 11/25/19 1340 X 1 1 1	Water / I Air / Vap Total Nu H ₂ SO ₄ HNO ₃ HCI HCI HCI
324_0.5-3 11/25/19 1406 X 1 1 1	X
334_0.5-3 11/25/19 150\$ X 1 1 1	
134_6-15 11/25/19 1528 X 1 1 1	×
3 0.5-3 12/03/14 1240 X 1 1 1 X X X X X C-15 12/03/14 1248 X 1 1 1 X X X X X X X X X 1 1 1 X	x
6-15 12/03/19 1248 x 1 1 1	1 t X
6.5-3 12/03/19 1305 X 1 1 1 X X X X X 1 1 1 X X X X X 1 1 1 1 X X X X X X 1 1 1 X	X
6-15 12/03/19 1441 X 1 1 1 X X X X X X 12/03/19 1500 X 1 1 1 X X X X X X X X X X X X X X X	×
3cyce Johnson Relinquished By/Affiliation Date Nood Color of 16 1 1	x 1 1 1
Bryce Johnson Relinquished By Affiliation Date Wood Con Control Alia	<i>x</i>
Bryce Johnson Relinquished By / Affiliation Date Wood Shin Date 17/4/19	1
Wood Shin Date 17-141 a	
C. Shin Date: 17. Alia	Jood
ree Ex	1 20 20
Shipment Tracking No: 1711 5043 8407 /1111 5048 2097	
Special Instructions: Use NV approved protocols	

MS/MSD Sample Submitted: Yes / No

Trip Blank: Yes / No

°F/C

Cooler Temp on Receipt:

Temp Blank: Yes / No

THIS LINE - LAB USE ONLY: Custody Seals In Place: Yes / No